

# Advanced Combustion via Microgravity Experiments (ACME)



Combustion Integrated Rack (CIR)

#### Spherical Flame (s-Flame)

PI: Prof. C. K. Law. Princeton University

Co-Is: Prof. Stephen Tse, Rutgers U.; Dr. Kurt Sacksteder, NASA GRC

#### Flame Design

PI: Prof. Richard Axelbaum, Washington University, St. Louis Co-Is: Prof. Beei-Huan Chao, U. Hawaii; Prof. Peter Sunderland, U. Maryland; Dr. David Urban, NASA GRC

#### Coflow Laminar Diffusion Flame (CLD Flame)

PI: Prof. Marshall Long, Yale University Co-I: Prof. Mitchell Smooke. Yale University

#### Electric-Field Effects on Laminar Diffusion Flames (E-FIELD Flames)

PI: Prof. Derek Dunn-Rankin. UC Urvine

Co-Is: Prof. Felix Weinberg, Imperial College, London; Dr. Zeng-Guang

Yuan, NCSER/GRC

PS's: Dennis Stocker, NASA GRC; Dr. Fumiaki Takahashi, NCSER/GRC

PM: Robert Hawersaat, NASA GRC

Engineering Team: ZIN Technologies, Inc.

s-Flame (drop test)



Flame Design (drop test)



**CLD Flame** (aircraft test)



Glenn Research Center

E-FIELD **Flames** (1g schlieren)

#### Objective:

- Modular apparatus designed for gaseous fuel investigations to study:
  - combustion structure and stability near flammability limits
  - soot inception, surface growth, and oxidation processes
  - emission reduction through nitrogen exchange
  - combustion stability enhancements via an electric field

#### Relevance/Impact:

- Verified computational models that will enable the design of high efficiency, low emission combustors operating at nearlimit conditions.
- Reduced design costs due to improved capabilities to numerically simulate combustion processes.
- Efficient soot control strategies for industrial applications.

#### **Development Approach:**

- Flight design leverages off previous flight design heritage.
- Multi-user, re-usable apparatus minimizing up-mass/volume, costs, and crew involvement.

### **Project Life Cycle Schedule**

## Revision Date: 2008/12/03

| Revision Date. 2000/12/03 |                                                                                                                                                                       |        |         |               |               |        |                        |        |     |        |              |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|---------------|---------------|--------|------------------------|--------|-----|--------|--------------|
| Milestones                | SCR                                                                                                                                                                   | RDR    | CDR     | VRR           | Safety (PH-3) | PSR-2  | Ship                   | Launch | Ops | Return | Final Report |
| Actual/ Baseline          | 2/2008                                                                                                                                                                | 3/2009 | 12/2009 | 9/2010        | 3/2011        | 9/2011 | 3/2012                 | 4/2012 | TBD | TBD    | TBD          |
| Documentation             | Website:spaceflightsystems.grc.nasa.gov/Advanced/IS<br>SResearch/Investigations/ACME<br>eRoom:collaboration.grc.nasa.gov/eRoom/NASAc1f1/<br>GaseousCombustion/0_56f47 |        |         | SRD:<br>EDMP: |               |        | Project Plan:<br>SEMP: |        |     |        |              |

### ISS Resource Requirements

| Accommodation (carrier)                                                             | CIR                |
|-------------------------------------------------------------------------------------|--------------------|
| Upmass (kg)<br>(w/o packing factor)                                                 | TBD kg             |
| Volume (m³)<br>(w/o packing factor)                                                 | TBD m <sup>3</sup> |
| Power (kw)<br>(peak)                                                                | TBD Kw             |
| Crew Time (hrs) - Initial configuration of CIR Rack - Change-outs during experiment | TBD hrs<br>TBD hrs |
| Autonomous Ops (hrs)                                                                | TBD hrs            |
| Launch/Increment                                                                    | TBD                |